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Abstract Advanced backcross QTL (AB-QTL) analysis
was used to identify quantitative trait loci (QTLs) for
yield and yield components in a BC2F2 population derived
from a cross between the German winter wheat variety
‘Prinz’ and the synthetic wheat line W-7984 developed by
CIMMYT. Two hundred and ten microsatellite markers
were employed to genotype 72 pre-selected BC2F2 plants
and phenotypic data were collected for five agronomic
traits from corresponding BC2F3 families that were grown
at four locations in Germany. Using single-marker
regression and interval mapping, a total of 40 putative
QTLs derived from W-7984 were detected, of which 11
were for yield, 16 for yield components, eight for ear
emergence time and five for plant height. For 24 (60.0%)
of them, alleles from the synthetic wheat W-7984 were
associated with a positive effect on agronomic traits,
despite the fact that synthetic wheat was overall inferior
with respect to agronomic appearance and performance.
The present study indicated that favorable QTL alleles
could be transferred from wild relatives of wheat into an
elite wheat variety for improvement of quantitative trait
loci like yield by the advanced backcross QTL strategy
and molecular breeding. To our knowledge, the results
presented here were the first report on AB-QTL analysis
in wheat.

Keywords Microsatellite markers · Quantitative trait
loci (QTLs) · Triticum aestivum · Yield · Yield
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Introduction

Bread wheat (Triticum aestivum L.) is one of the most
important crops in the world. It is an allohexaploid
carrying the genomes AABBDD (2n = 6x = 42). Wild
emmer wheat, Triticum dicoccoides Korn (2n = 28,
AABB) and diploid Aegilops tauschii (2n = 14, DD) are
the tetraploid progenitor and the D-genome donor of
cultivated hexaploid wheat, respectively (Kihara 1944).
Many genes for resistance to leaf rust, strip rust, stem rust
and powdery mildew have been transferred from relatives
of wheat such as durum wheat and Aegilops tauschii into
bread wheat (Knot 1989; Lutz et al. 1995). For increasing
yield, however, wild relatives were not employed as a
potential source for favorable alleles to-date, since crosses
were usually performed within the gene pool of high
yielding varieties. This kind of modern breeding has led
to a narrowing of genetic diversity by concentrating
favorable alleles. So far, no attempt has been made to
utilize wild and unadapted germplasm for improvement of
yield in wheat, because agriculturally desirable alleles for
yield are often masked by the effects of deleterious alleles
and hence cannot be identified phenotypically in the wild
germplasm (Xiao et al. 1998).

Grain yield and its component traits, such as ear
number per plant, ear grain weight, spikelet number per
ear, thousand-grain weight and plant height, are generally
controlled by a number of quantitative trait loci (QTLs).
Molecular markers and maps allow one to detect QTLs
controlling traits for yield and the relationship between
grain yield and its components. Many scientists have
reported on mapping QTLs for grain yield and its
components by using various segregating populations
such as F2, recombinant inbreeding lines (RILs) and a
double-haploid (DH) population in diploid crop plants
like rice (Lin et al. 1996; Xiao et al. 1996), barley (Bezant
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et al. 1997) and maize (Veldboom and Lee 1994; Austin
and Lee 1996). In hexaploid wheat, however, QTL
analyses of grain yield and its components using molec-
ular marker systems are limited (Hyne et al. 1994)
because RFLP (Chao et al. 1989) and RAPD markers
(Devos and Gale 1992) show a low level of polymor-
phism in wheat, especially in a cross between two
cultivars and, hence, detected polymorphic markers
cannot cover the entire genome. Several studies concern-
ing mapping QTLs for grain yield and its components on
chromosomes 3A (Shah et al. 1999), 4A (Araki et al.
1999) and 5A (Kato et al. 2000) of wheat have been
recently reported by using recombinant substitution lines.

Microsatellite markers, also termed simple sequence
repeats (SSRs) in wheat, were chromosome-specific and
evenly distributed along chromosomes (R�der et al.
1998a, b). Such markers reveal a higher level of
polymorphism than RFLP markers. Microsatellite mark-
ers have been widely used for tagging resistance genes
(Peng et al. 1999; Huang et al. 2003), marker-assisted
selection in wheat (Huang et al. 2000a), and assessment of
genetic diversity in closely related bread wheat (Plaschke
et al. 1995) and a large number of wheat accessions
(Huang et al. 2002). A large number of wheat microsatel-
lite markers recently developed by R�der et al. (1998b,
unpublished data; Pestsova et al. 2000; Huang et al. 2001)
enables the identification of QTLs for yield and its
components in wheat.

Advanced backcross (AB) QTL analysis has been
proposed as an approach for combining marker-based
QTL discovery with elite variety improvement (Tanksley
and Nelson 1996). This strategy has been successfully
applied in detecting and transferring valuable QTLs from
unadapted germplasm into elite breeding lines for several
crop plants like tomato (Tanksley et al. 1996; Bernacchi
et al. 1998) and rice (Xiao et al. 1998; Moncada et al.
2001). Here, we report for the first time an AB-QTL
analysis in winter wheat. The objectives of the present
study were to detect and map QTLs controlling grain
yield and its components using a BC2F2 population
derived from a cross between the German winter wheat
variety ‘Prinz’ as the recurrent parent and a synthetic
wheat W-7984 as donor.

Materials and methods

Plant materials

The German winter wheat cultivar ‘Prinz’ and a synthetic hexaploid
wheat, W-7984, were used as the recurrent and donor parent in this
study, respectively. W-7984 was produced from the cross between
durum wheat (Triticum turgidum L.) cultivar ‘Altar 84’ and
Triticum tauschii CIMMYT accession WPI 219, as described by
Nelson et al. (1995a). This line was used as a parent to develop the
International Triticeae Mapping Initiative (ITMI) population
‘Opata’ � W-7984 for mapping of RFLP markers (Nelsen et al.
1995a, b; Marino et al. 1996) and microsatellite markers (R�der et
al. 1998b).

Population development

W-7984 was crossed as the female parent to ‘Prinz’. F1 plants were
grown in the greenhouse in Monsanto GmbH, Silstedt, and the six
most vigorous F1 plants were backcrossed to ‘Prinz’ (as the male).
Ninety five BC1F1 plants were obtained, which were grown in the
field. The best 42 individuals based on phenotypic selection were
backcrossed a second time to ‘Prinz’ to produce approximately 164
BC2F1 seeds. They were grown in the field to produce BC2F2 and
subsequently BC2F3 families. The best 72 BC2F3 families were
selected for measurement of agronomic traits.

Field trials and trait evaluation

The field trials were conducted in the year 2001 at four different
locations spread over the north and south of Germany: Wetze
(WE), B�hnshausen (B�), Moosburg (MO) and Herzogenaurach
(HA). A complete randomized block design was used for the field
trials. The 72 BC2F3 families were sown in two replications at WE,
B� and MO, and with one replication in HA. Each family was
grown in 5.9 m � 1.25 m plots. In total, 190 kg of urea (nitrogen)/ha
were applied at five different growth points. All trials were kept
free of weeds and diseases, with two applications of broad-range
herbicides and fungicides, respectively.

Grain yield per plot (YLD) was evaluated based on the grain
harvest from all plants in each plot. Ear emergence time (EET) was
evaluated based on morphological characters in each plot. Plant
height (HT) was calculated as the average height of ten plants in cm
from the soil surface to the tip of the spike (awns excluded). Tiller
number per m2 (TN) was calculated as the spike number of 1 square
meter from each plot. Thousand-grain weight was measured in
grams as the average weight of two different samples of 1,000
grains from each plot.

Trait correlations and analysis of variance (ANOVA)

Correlations between traits were calculated for each trait/location
combination based on the field data using the QGene software
(Nelson 1997).

Using the package Minitab for Windows (MINITAB Inc., State
College, Pa.), one-way ANOVA was performed to determine the
significances of differences between the genotypes of the popula-
tion lines and between the locations (environments).

Microsatellite marker analyses

DNA from the two parents ‘Prinz’ and W-7984 was investigated for
polymorphism using microsatellite markers. The order and distri-
bution of the microsatellite markers were based on the ITMI
population of wheat described by R�der et al. (1998b; unpublished
data). Segregation ratios of individual markers were statistically
determined for each marker locus and deviations from the expected
ratios were determined using the chi-square (c2) test. Six plants
from each of 72 BC2F3 families were bulked for DNA extraction.
Total genomic DNA was extracted from young leaf tissue, frozen in
liquid nitrogen, as previously described by Huang et al. (2000b).
Polymorphic microsatellite markers were used for genotyping. PCR
reactions of microsatellite markers were performed according to
R�der et al. (1998b). Microsatellite fragments were detected on an
automated laser fluorescence (A.L.F.) sequencer and analysed
using the computer program Fragment Analyser Version 1.02
(Pharmacia) by comparison with the internal size standard (R�der
et al. 1998b).

QTL analysis

The software Qgene developed by Nelson (1997) was used for QTL
analysis. The association between phenotype and marker genotype
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was investigated using single-marker regression. The positions of
detected QTLs were determined using interval mapping. Each trait/
location combination was treated separately. According to Fulton et
al. (1997a, 2000) and Tanksley et al. (1996), regions of the
genomes were identified as putatively containing a QTL if the
results met one or more of the following criteria: a significant effect
was observed for a single marker/trait combination at a single
location with P < 0.001; significant effects were observed in the
same direction (i.e. either all positive effects or all negative effects)
for a single marker/trait combination at two or more locations with
P < 0.01; significant effects were observed in the same direction for
a single marker/trait combination at three or more locations with P
< 0.1.

The percent phenotypic variation (%PV) associated with each
significant QTL was calculated from the regressions of each
marker/phenotype combination. The percent phenotypic change
(A%) of each significant QTL, associated with the presence of the
donor allele at a given marker locus, was estimated as A% =
100(AB-AA)/AA (Fulton et al. 1997a, 2000), where AA is the
phenotypic mean for the individual homozygous for Prinz alleles at
specified markers and AB is the phenotypic mean for the
heterozygotes Prinz/W-7984.

Results

Microsatellite polymorphism and marker segregation

Out of 298 microsatellite markers, 210 (70.5%) that
detected polymorphism between the recurrent parent
‘Prinz’ and the donor parent W-7984 were used to
genotype the BC2F2 population. These SSR markers
covered the whole genome of wheat. The distribution of
the markers is shown in Fig. 1. The highest polymorphism
with 84 markers was found in the D genome, followed by
the B genome (69) and the A genome (57). On average,
there were ten markers on each chromosome, varying
from six markers on chromosomes 4B, 4D and 5A to 15
markers on chromosome 7D. Large gaps (more than
45 cM) remained on chromosomes 2B, 3B, 3D, 4D, 5A,
5D and 6A (Fig. 1). The average number of heterozygotes
per locus was 18.9%, close to the expected 25%
heterozygotes in a BC2F2 population. The segregation
ratio at 32 loci (15.2%) deviated from the expected ratio
(c2 < 3.84, P < 0.05). Twenty four loci were skewed
towards W-7984, while eight loci deviated towards
‘Prinz’ of which six loci were on chromosome 4B. This
may be the result of the low recombination frequency on
chromosome 4B as suggested by Huang et al. (2002).

Correlations between traits and ANOVA
for genotypes and environments

Correlation coefficients between traits were calculated
separately for each location (Fig. 2). No clear correlations
were found between total yield and its components for
four locations. It appears that ear emergence time was not
correlated to total yield. A significant positive correlation
between plant height and total yield was found for one
location (B�). Total yield showed a negative correlation
with thousand-grain weight in MO, but a significant
positive correlation in HA. There was a significant

negative correlation between total yield and thousand-
grain weight averaged for four locations (r = –0.41, P <
0.001). Thousand-grain weight was significantly corre-
lated with plant height at four locations.

The F-value of ANOVA for the genotypes and
environments is presented in Table 1. When ANOVA
for total yield was performed in four locations, there was
no significant difference between total yield of the
population lines but significant differences between the
four locations (F = 76.65, P < 0.0001). It appeared that
the environment had a great affect on total yield. The
reason was that the field trial in HA was performed under
non-uniform soil conditions. When ANOVA for total
yield was carried out for the other three locations without
HA, significant differences between the total yield of the
population lines (F = 7.35, P < 0.0001), and no significant
differences between the three locations, were observed.
Significant differences were found for ear emergence time
as well as plant height. Differences between thousand-
grain weight (TGW) of the population lines were not
significant, but differences for TGW between the four
locations were highly significant (F = 249.19, P <
0.0001). There were significant differences between tiller
number/m2 of the population lines (F = 1.66, P < 0.05)
and no significant differences between the two locations,
WE and MO.

QTLs detection

Putative QTLs for each trait are listed in Table 2 and their
map positions are shown in Fig. 1. As stated in the
methods section, criteria for the definition of a QTL were
set in accordance with Tanksley et al. (1996) and Fulton
et al. (1997a, 2000). Based on these criteria, a total of 40
putative QTLs were identified, ranging from 5 to 11
QTLs for each trait.

Total yield

Eleven QTLs were detected for total yield, explaining
from 9.6% to 21.6% of the phenotypic variance with a
LOD of 1.6 to 3.8. For seven QTLs, the Prinz allele
increased total yield. For four QTLs, QYld.ipk-1B,

Table 1 The F-value of ANOVA for genotype and environment in
the BC2F2 population of the cross Prinz � M6

Item Genotype Environment

df F-value df F-value

Total yield 71 0.93 ns 3 76.65****
Total yield without HA 71 7.35**** 2 1.30 ns
Ear emergence time 71 3.67*** 3 38.45****
Plant height 71 2.01*** 3 74.06****
Thousand-grain weight 71 0.53 ns 3 249.19****
Tiller number/m2 71 1.66* 1 0.89 ns

Significance levels: *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001
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QYld.ipk-2A, QYld.ipk-2D.1 and QYld.ipk-5B, the wild
allele had an effect that increased total yield by 5.0%,
15.0%, 6.0% and 14.5%, respectively (Table 2). However,
the QTLs QYld.ipk-2A and QYld.ipk-5B were only
detected in one location (HA).

Ear emergence time

Eight QTLs were significantly associated with ear
emergence time. For all the QTLs that were located on
chromosomes 2A, 2D, 3B, 5A, 5B, 6A and 7B, respec-
tively, the W-7984 allele reduced the number of days to

Fig. 1 Linkage map of mi-
crosatellite markers used for
BC2F2 QTL analysis. The
marker order and relative dis-
tances (in Kosambi mapping
units) are based on the ITMI
population. The centromeres are
indicated in black. Putative
QTLs are shown on the right
side. Underlined QTL, the allele
from synthetic wheat W-7984 is
favourable for the traits. Ab-
breviations for traits: Eet = ear
emergence time, ht = plant
height, tgw = thousand-grain
weight, tn = tiller number per
m2, yld = yield

1382



ear emergence. The variation explained by these individ-
ual QTLs ranged from 9.0% to 16.9%.

Plant height

Five putative QTLs significantly influenced plant height.
These single QTLs explained 9.4%–29.5% of the pheno-
typic variance with a LOD of 1.6 to 5.5. For four QTLs,
the wild alleles increased plant height, while for the other
QTLs, QHt.ipk-2B, the alleles from W-7984 decreased
plant height by 3.9%.

Tiller number/m2

Tiller number/m2 was evaluated only in two locations,
WE and MO. Eight QTLs were detected for tiller number/
m2, on chromosomes 1B, 2A, 2D, 3B, 4D, 5D, 6D and
7A. All QTLs explained more than 9.0% of the pheno-
typic variance. For four QTLs, QTn.ipk-1B, QTn.ipk-2D,
QTn.ipk-3B and QTn.ipk-5D, the W-7984 alleles in-
creased tiller number by 5.7%–6.0%.

Fig. 1 (continued)
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1,000-grain weight

Eight QTLs were significantly associated with 1,000-
grain weight. Seven of them had an effect from the wild
alleles on increasing 1,000-grain weight. The QTL on

chromosome 7B explained 25.9% of the variance with a
LOD = 4.7, whereas the QTL on chromosome 4D
increased 1,000-grain weight by 11.7%. It is very
interesting to note that four QTLs were detected in
homoelogous group 7. The QTLs QTgw.ipk-7A,

Fig. 1 (continued)
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QTgw.ipk-7B.1 and QTgw.ipk-7D were mapped in the
homoelogous positions of group 7.

Discussion

Conventional wheat breeding for increase of yield is
usually performed by selecting for combinations of
genotypes from a cross between two high yielding
varieties. This approach has increasingly narrowed the
genetic diversity of wheat. Advanced backcross QTL
(AB-QTL) analysis provides a possibility to use wild,
unadapted relatives of crops for the improvement of
cultivated varieties. This strategy has been successfully
applied in diploid crop plants such as rice and tomato for
genetic improvement of quantitatively inherited traits like
yield, fruit size and others (Fulton et al. 1997a; Xiao et al.
1998; Moncada et al. 2001).

Co-dominant and locus-specific molecular markers are
required to identify donor alleles containing specific
QTLs from wild relatives of crops. Bread wheat is a
hexaploid wheat possessing A, B and D genomes. Among
four major marker systems, RAPD markers and AFLP
markers were not suitable for AB-QTL analysis because
they are dominant markers and are not easily transferable
between different populations. RFLP probes from cereals
that were digested with different restriction enzymes can
be mapped to three different homoeologous chromosomes
(e.g. 1A, 1B or 1D) of hexaploid wheat; therefore, RFLP
markers are very useful for comparative mapping, but
extremely difficult for AB-QTL analysis. Microsatellite
markers are PCR-based markers, co-dominant and locus-
specific (R�der et al. 1998b), hence they are an ideal
molecular marker for the identification of donor seg-
ments. In cases where the amplified fragment is present in
one parent, but absent in the other parent, only the
microsatellite marker that generates the products in the
donor parent can be used for genotyping.

In the present study, 210 polymorphic microsatellite
markers were used to detect the QTLs for yield and its
components in the BC2F2 population from the cross
‘Prinz’ � W-7984. These markers spanned 3,006 cM in
the ITMI population. The average spacing of the used
microsatellite markers was 14 cM. The highest polymor-
phism was found in the D genome. This could be
explained by the fact that the parents of the synthetic
hexaploid wheat W-7984 were cultivated tetraploid wheat
for the genomes AABB, but a wild species (T. tauschii)
for the D genome. It has been found that W-7984
possesses QTLs associated with resistance to tan spot and

Fig. 2 Correlations between traits in the BC2F2 Population from
the cross Prinz � M6. Significance levels: * P < 0.05, ** P < 0.01,
*** P < 0.001. WE = Wetze, B� = B�hnshausen, MO = Moosburg,
HA = Herzogenaurach, – = no data, eet = ear emergence time,
ht = plant height, tgw = thousand-grain weight, tn = tiller number
per m2, yld = yield

Fig. 1 (continued)
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leaf rust in the ITMI population (Faris et al. 1999).
Recently, B�rner et al. (2002) mapped some quantitative
trait loci for agronomically important characters which
originated from W-7984 in the ITMI population. Hence,

W-7984 was selected for AB-QTL analysis to identify
beneficial alleles in the BC2F2 population.

In many QTL analyses by the Advanced Backcross
method it is accepted that inferior types are selected
against, either morphologically or genotypically. Al-

Table 2 Putative QTLs detected in a BC2F2 Population from the cross Prinz � M6. (WE = Wetze, B� = B�hnshausen, MO = Moosburg,
HA = Herzogenaurach, ns = not significant, nd = no data)

Trait QTL Marker WE B� MO HA LODa %Ab %PVc

Total yield QYld.ipk-1A Xgwm99 **–d *– *– ns 1.9 –7.3 11.7
QYld.ipk-1B Xgwm268 ns **+e *+ *+ 1.6 5.0 9.7
QYld.ipk-2A Xgwm95 ns ns ns ***+ 2.6 15.0 15.2
QYld.ipk-2B Xgwm120 ns ns ns ***– 3.0 –25.9 17.6
QYld.ipk-2D.1 Xgwm702 **+ *+ *+ ns 1.9 6.0 11.5
QYld.ipk-2D.2 Xgdm6 **– ns *– *– 1.6 –4.8 9.6
QYld.ipk-3B.1 Xgwm493 **– *– *– ns 1.6 –5.3 9.6
QYld.ipk-3B.2 Xgwm685 ****– **– ***– ns 3.8 –8.1 21.6
QYld.ipk-4D.1 Xgdm129 **– **– ns ns 1.7 –6.6 10.1
QYld.ipk-4D.2 Xgdm1163 **– **– **– ns 2.1 –5.0 12.3
QYld.ipk-5B Xgwm234 ns ns ns ***+ 2.6 14.5 15.0

Ear emergence time QEet.ipk-2A Xgwm95 *+ **+ ns *+ 2.2 2.7 11.5
QEet.ipk-2D Xgwm484 *+ ns **+ ***+ 2.6 2.6 15.0
QEet.ipk-3B Xgwm493 *+ +* **+ ns 1.6 2.9 9.8
QEet.ipk-5A Xgwm1236 **+ *+ *+ ns 1.5 2.2 9.0
QEet.ipk-5B Xgwm604 *+ *+ **+ *+ 1.6 2.1 9.8
QEet.ipk-6A.1 Xgwm494 *+ **+ ns **+ 2.0 2.2 11.9
QEet.ipk-6A.2 Xgwm427 **+ ***+ **+ *+ 2.9 3.7 16.9
QEet.ipk-7B Xgwm263 **+ *+ **+ **+ 2.3 3.7 13.7

Plant height QHt.ipk-2B Xgdm87a ***– *– ns ns 3.0 –3.9 17.4
QHt.ipk-4B Xgwm149 ns **+ ns **+ 2.0 5.8 11.8
QHt.ipk-4D Xgdm61 *+ ****+ **+ ****+ 5.5 7.3 29.5
QHt.ipk-6A Xgwm570 *+ *+ **+ ***+ 2.8 8.5 16.5
QHt.ipk-7B Xgwm46 **+ ns *+ ns 1.6 3.1 9.4

Tiller number/m2 QTn.ipk-1B Xgwm759 ns nd **+ nd 1.8 5.8 10.5
QTn.ipk-2A Xgwm265 **– nd ns nd 2.1 –7.0 12.6
QTn.ipk-2D Xgwm539 *+ nd **+ nd 2.0 5.9 11.7
QTn.ipk-3B Xgwm264b ns nd **+ nd 1.9 6.0 11.0
QTn.ipk-4D Xgwm819 **– nd ns nd 1.6 –6.3 9.2
QTn.ipk-5D Xgdm63 ns nd **+ nd 2.1 5.7 12.3
QTn.ipk-6D Xgwm1167b **– nd ns nd 1.8 –8.4 10.8
QTn.ipk-7A Xgwm130 **– nd ns nd 1.8 –6.5 10.8

1000-grain weight QTgw.ipk-2A Xgwm636 ns ***– *– ns 3.0 –5.6 17.2
QTgw.ipk-2D Xgdm6 *+ *+ *+ ***+ 2.6 10.3 15.4
QTgw.ipk-4D Xgdm61 ns **+ ns ***+ 2.5 11.7 14.3
QTgw.ipk-5B Xgwm544 **+ *+ ***+ ***+ 2.8 4.8 16.0
QTgw.ipk-7A Xgwm573b ***+ *+ **+ *+ 2.5 3.8 14.5
QTgw.ipk-7B.1 Xgwm46 ***+ **+ ****+ ***+ 3.6 4.9 20.6
QTgw.ipk-7B.2 Xgwm983 ***+ **+ ****+ **+ 4.7 5.8 25.9
QTgw.ipk-7D Xgwm1002 **+ ***+ **+ **+ 3.0 6.6 17.3

Significance levels: * P < 0.1, ** P < 0.01, *** P < 0.001, **** P < 0.0001
a LOD score from the location with the underlined P-value
b A (%) = 100(AB–AA)/AA where AA is the phenotypic mean for the individual homozygous for Prinz alleles at specified markers and
AB is the phenotypic mean for the heterozygotes Prinz/W-7984
c % PV = phenotypic variance estimated from marker regression against phenotype
d +/– indicate a positive or negative effect from the W-7984 allele
e Underlined P-value indicates location for which A (%) and % PV were calculated
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though 164 lines were available for this investigation, the
selection to investigate only 72 was made due to the fact
that in such a population there was an extreme variation
of phenotypes, of which many are not interesting for the
plant breeders. A population of 72 plants is certainly at
the lower end of the plant numbers that have been
analyzed in such studies. The increase in significance that
might be gained by the larger population would at least be
partially offset by such negatively acting genes. However,
a larger population is also a much higher burden for
population generation (due to sterility in the material) and
population analysis.

There were no significant correlation coefficients
between yield and its components, indicating the com-
plexity of the trait yield. The results of ANOVA indicated
that environmental factors influenced genotypes for yield
and yield components in the AB-QTL analysis (Table 1).
Alleles from the synthetic wheat W-7984 were associated
with a positive effect on yield for four of the 11 QTLs
detected for this trait. The four QTLs for yield-increase
were mapped on chromosomes 1B, 2A, 2D and 5B,
respectively (Table 2 and Fig. 1). The yield-increasing
QTL QYld-ipk-2D.1 may be a pleiotropic effect of the
gene Ppd1 for day length insensitivity that is important
for the adaption to short days and which increases yield in
southern Europe (B�rner et al. 1993; Worland et al.
1998).

For the eight QTLs identified for ear emergence time,
alleles from W-7984 were associated with earlier ear
emergence. These QTLs were mapped to chromosomes
2AS, 2DS, 3BS, 5AL, 5BL, 6AL and 7BS, respectively.
Law and Wolfe (1966) located a genetic factor for ear
emergence time on chromosome 7BS. The QTL on
chromosome 2DS, QEet.ipk-2D, might be the same as
that found in the ITMI population (B�rner et al. 2002). In
hexaploid wheat, the vernalization response gene Vrn-A1
on chromosome 5A appears to contribute a major effect
on controlling ear emergence time (Law et al. 1976). The
QTL on chromosome 5A, QEet.ipk-5A, is located in a
similar position as QEet.ocs-5A.1 reported by Kato et al.
(1999). The QTLs controlling ear emergence time
identified on chromosomes 7A (Hyne et al. 1994) and
4A (Araki et al. 1999) were not detected in the present
study.

A reduction in plant height can improve lodging
resistance and indirectly increase yield. However, Law et
al. (1978) found that there was a positive correlation
between reduced height and reduced yield, and the
genetic control of plant height is known to be complex
involving many genes. In the present study, five QTLs
were associated with plant height, of which one QTL
from W-7984 decreasing plant height was identified on
chromosome 2BL. The alleles from W-7984 at loci
Xgwm149 on chromosome 4B and Xgdm61 on chromo-
some 4D increased height (Table 2). A possible explana-
tion is the presence of the Rht-B1 and Rht-D1 alleles in
‘Prinz’ (B�rner et al. 1997). The QTL on chromosome
6A, QHt.ipk-6A, observed in the present study is possibly
the same as that previously detected by B�rner et al.

(2002). The other QTLs on chromosomes 1AS, 1BL and
7AL found by Cadalen et al. (1998) and B�rner et al.
(2002) were not identified here.

Eight QTLs for tiller number/m2 were detected in this
study; in four cases QTn.ipk-5D, QTn.ipk-2D, QTn.ipk-3B
and QTn.ipk-1B, the W-7984 alleles were associated with
an increase in the tiller number (Table 2). Few studies on
the identification of QTLs for tiller number were reported.
By using single-chromosome recombinant lines, QTLs for
tiller number were discovered on chromosomes 3A, 5A
and 7B, respectively (Law 1967; Shah et al. 1999; Kato et
al. 2000).

The alleles derived from W-7984 were associated with
an increase of 1,000-grain weight for seven of eight QTLs
detected for this trait. Three of these loci, QTgw.ipk-7A
and QTgw.ipk-7B.1 and QTgw.ipk-7D, were located in the
homoeologous position of group 7. The QTLs on
chromosomes 7B and 7D are in similar positions to the
1,000-grain weight QTLs reported by B�rner et al. (2002)
based on the same donor W-7984 in the ITMI population.
The QTL on chromosome 4D, QTgw.ipk-4D, may be
homoeologous to the 50-grain-weight QTL on chromo-
some 4A identified by Araki et al. (1999).

A total of 40 QTLs were identified for the five traits in
the present study. For 24 (60.0%) of them, alleles from
the synthetic wheat W-7984 were associated with a
positive effect on plant performance. It is worth noting
that for all five QTLs mapped in homoeologous group 5,
the synthetic wheat W-7984 alleles showed the positive
phenotypic effect (Table 2 and Fig. 1). Yield QTLs and
QTLs for yield components were mapped independently
in most cases. This was consistent with the result that
there was no significant correlation between yield and its
components. Kato et al. (2000) found that yield was
highly correlated with yield components. This could be
explained by the fact that they used single-chromosome
recombinant lines. Yield can be increased by a few heavy
grains or many light grains, and a few large ears or many
smaller ears. Tiller number can increase yield directly by
increasing the number of ears. But late-developing tillers
often fail to produce ears and compete with ear-bearing
tillers for resources and thus reduce yield indirectly
(Bezant et al. 1997). For two QTL loci, yield seemed to
be negatively correlated with thousand-grain weight. The
allele from W-7984 flanked by the markers Xgwm539 and
Xgdm6 on chromosome 2D, as well as between the
flanking markers Xgdm61 and Xgwm129 on chromosome
4D, decreased yield but increased thousand-grain weight.
The W-7984 allele at the locus Xgwm95-2A reduced the
number of days to ear emergence, but increased yield. In
another case, a yield QTL coincided and was positively
correlated with a QTL for plant height, for example on the
short arm of chromosome 4D.

QTLs for yield and yield components detected in the
present study were mainly distributed on chromosomes
2D, 3B, 4D, 5B, 6A and 7B. Several chromosomal
regions were associated with more than one trait,
indicating either pleiotropic or linkage effects. For
instance, in the 2.9-cM interval between Xgdm61 and
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Xgdm129 on chromosome 4DS, there were four QTLs for
plant height, thousand-grain weight, tiller number/m2 and
yield. Four QTLs for yield, ear emergence time and tiller
number/m2 were identified on the short arm of chromo-
some 3B (Fig. 1). It is important to mention that relatively
low LOD scores were used to identify the putative QTLs
in the present study, because it is difficult to detect QTLs
using a high threshold in smaller populations (Lin et al.
1998). These putative QTLs need to be confirmed in a
large BC3 population. The development of a large BC3
population is in progress, because more favorable QTLs
could be detected in a BC3 population rather than in a BC2
population (Fulton et al. 1997b). Moreover, it is necessary
to develop near-isogenic lines containing introgressions
associated with QTLs for further genetic characterization
of yield and its components.

The present study suggests that favorable QTL alleles
could be transferred from wild relatives of wheat into an
elite wheat variety for improvement of yield by advanced
backcross QTL strategy and microsatellite markers.
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